Internet Outages : Analysis of the Outages Mailing List

Guanyu Zhu
zhuguanyu2010@gmail.com

Wei-Ting Lin

wei-

Zhaowei Sun
zhaowei.sun@stonybrook.edu

ting.lin@stonybrook.edu

ABSTRACT

Internet outages are an essential topic for the contemporary
society because of the popularity of mobile devices rises,
and the broad scope existence of Internet services. A sudden
Internet outages could cause several consequences such as
companies are unable to work[1], students are unable to do
their assignments[2] and even the finance of a country could
drop down. If there is a way which can help us to analyze
and predict the causes of Internet outages, Internet providers
and the technicians will be able to solve the problems and re-
pair the hardware more efficiently. Unfortunately, although
people have already noticed how critical it is, the study of
Internet outages is being obstructed by many reasons such
as the benefits of the Internet providers, private information,
and the inadequate open resources. One related paper[3]
puts great effort on the Internet outage this topic, the au-
thors use Natural Language Processing (NLP) and Machine
Learning technique to analyze and categorize the keywords
in the outage mailing list [4] in order to classify the cause
and effect of the Internet outages.

1. DATASETS

In this section, we introduce the basic idea about the
data that we use in this project such as where the data
is obtained, what the data is use for, what the data
looks like and how do we use the data for our project.

The outages mailing list (the data)[7] reports outages
related to failures of major communications infrastruc-
ture components. It intends to share information so
that network operators and end users can assess and
respond to major outages. The list contains outage re-
ports as well as post-mortem analysis and discussions
on troubleshooting.

We download and analyze the outages mailing list
taken on March, 2015 containing threads since its incep-
tion in 2006 [7]. It contains nine years discussions on the
mailing list. These discussions are organized into thou-
sands of threads. Each thread contains a host-post, and
it might also contain several replies. However, no mat-
ter a host-post or a reply, each of them contains posters

information, subject, message, system information and
a unique message ID. In our implementation, the usage
of this data is to extract the subject and the contain of
each host-post or reply and to assign each contain with
the same subject to the same thread. In Figure 1, we
show the first email, last email, total amount of posts,
replies and threads.

First Email: Fri 09/29/2006
Last Email: Wed 03/25/2015
Num of Posts: 6963

Num of Replies: 4725

Num of Threads: 2169

Figure 1: Datasets

Apparently, the number of replies is always lower
than the number of posts. The reason why the num-
ber of threads is lower than the number of post is be-
cause two individual post might involve in the same
subject. We consider them as the same thread in our
implementation. Even though the number of posts in
each month changes dramatically, Figure 2 shows that
the average number of threads do not change dramat-
ically in each month. For the midterm report, we use
about 30 threads to be our test data and implement our
classifier.

200

¥ Posts

¥ Threads

Figure 2: Num of Posts and Threads in the

datasets

2. MAILLIST TEXT ANALYSIS

In this section, we discuss how we extract keywords
from the e-mail postings and present preliminary anal-
ysis of topics over time.

Data Processing

The fact that maillist threads are comprised of natu-
ral language text which means that they are rich with
semantic information underlying the failure, but also
presents a challenge in terms of automatically parsing
and processing the data. To address this challenge we
employ techniques from text mining and natural lan-
guage processing (NLP).

2.1 Merge the posts that belongs to the same
threads

In general, we consider the dataset at the level of
threads. Each thread consists of the set of e-mail mes-
sages (posts) in the thread. For each thread we extract
relevant information ex. term and phrases. After re-
moving quoted text (text from previous emails in the
thread included in each email) from its posts, we remove
the content which is unimportant and fixed repeating
such as the content between BEGIN PGP SIGNATURE
and END PGP SIGNATURE, empty lines, poster in-
formation (ex: name) and post information (ex: date)
that are not helpful for our final classifier.

Because the format of the original files is sometimes
out of order; hence, we write a program fix.py and use
it to run through all the files and adjust the order of the
content so that we can process the files and remove the
systems repeating content by our fliter.py easily.. Even-
tually, we save all different subjects of threads, assign
contents of original posts and reply posts to each thread
by using their Subjects and References and generate the
processed files.

2.2 Remove unrelated content of the thread

In this part, we remove the unrelated content in every
subject and thread. What is the meaning of unrelated
content 7 Those are some kinds of words those are
useless for analyzing the network outage. We classify
those unrelated contents into 9 categories

1. Spurious data. We firstly remove those spurious
data, which contained the identifying e-mail sig-
natures used by posters and some data added by
system or antivirus software. For example, This
message has been scanned for viruses and danger-
ous content by MailScanner, and is believed to be
clean. We treated this kind of message as the spu-
rious data and should be discarded.

2. Links. Then we ignored the url, website links and
email links in the posts. Those are has little things

with the outage of network.
3. Punctuations and Numbers.

4. Traceroute measurements. We think these info are
useless because only based on the traceroute mea-
surements we can figure out the root cause of an
incident.

5. Stop words(e.g., articles, prepositions and pronouns).
We also use a list of stop words obtained from the
SMART information retrieval system[5].

6. Organization and Human names. These organiza-
tion and Human names are no meaning for us to
analyze the cause of outage, such as Sprint, AT&T,
Gary, Tim, etc.

7. Time-related and Place-related words. Such as
day, night, NYC, San Jose, etc.

8. Some unrelated abbreviation words. Such like ICS,
ISP, etc.

9. Others. This includes some entities words(like
issue,information, etc) or phrase(like in order to)
that have nothing with network but can affect the
efficiency and accuracy about the NLP(natural lan-
guage processing) analysis.. . .

Compared with the methods mentioned in the refer-
ence paper[3](which only removes about 4 above kinds
of words), we can make our NLP analysis be more ac-
curate and efficient.

2.3 Stemming and Lemmatization

After step 2, the remaining words should be stemmed
and lemmatized (the process of grouping together the
different inflected forms of a word) using python Nat-
ural Language Toolkit(NLTK) so they can be analyzed
as a single item. For example, determining that walk,
walked and walking are all forms of the same verb: to
walk. Note that the simple stemming (i.e., walking to
walk) does not suffice as it cannot differentiate the parts
of speech based on context: e.g., when the term meet-
ing acts as a verb: we are meeting tomorrow vs. a noun
lets go to the meeting.

Lemmatization, on the other hand, can identify these
contextual differences. The reason for doing stemming
and Lemmatization is to decrease the dimension of the
data, because person and persons have the same effect
and meaning in the data for classifying the outage type,
if we regard them as different word, it does not improve
the classification effect but increase the dimension of
the data, it will decrease the efficiency of running time
and even the accuracy of our classification.

david

2.04769284337

everydns 1.82454929205
ulevitch 1.37042001196
personal 1.37042001196

explanation || 1.37042001196
net 1.23676262715

Table 1: TF-IDF Value

24 TF-IDF

After the step 3, at first, our initial idea is to use TF-
IDF algorithm[6] of python Natural Language Toolkit
(NLTK) to filter out words with tf-idf values less than
0.2. Low tf-idf value indicates that the word is very
common throughout the dataset, and it is not useful
for the data to use the classification method to classify
the type of outage. But after we use TF-IDF algorithm
to get the high value words, we found that some high
tf-idf value words also have no effect for our outage type
classification.

From the Table 1 we can see that the word david has
a high tf-idf value in the thread that we choose, but this
word is a name of person word that has no any influence
for our network outage type classification. If we use this
word just because its high tf-idf value, it will increase
the noise of our data and may influence the accuracy of
our classification. Hence, we import the name-word li-
brary and city-word library of python Natural Language
Toolkit(NLTK) to the unrelated content of thread.

2.5 Generate 2-dimension matrix for classifi-
cation

After step 4 we recompute the term frequency in the
dataset and generate the 2-dimension matrix for term
frequency. Every row indicates the different thread, ev-
ery column indicates the different word that appears in
the dataset. Once we get the matrix, we can use this
matrix to do the classification because this is the true
data that we want.

3. CLASSIFICATION METHODOLOGY

The terms and phrases extracted in our initial process-
ing give a high-level view of the discussions on the
mailing list. In this section, we discuss a classifica-
tion methodology to help us systematically categorize
the outages over time.

3.1 Labeling

First, based on the network knowledge base and gen-
eral network outage types, we classify outages into 14
different types: Routing, Power Outage, Packet Loss,
Natural Disaster, Mobile Data Network, Fiber Cut, DNS
Resolution, Device Failure, Congestion, Censorship, At-
tack, App. Server Down, App. Misconfiguration and

Maintenance|[3].

Our goal is to automatically characterize each outage
e-mail thread into categories along these dimensions.
However, because computers do not have the network
knowledge base, sometimes labeling task runs into am-
biguity. For example, an earthquake damages the ca-
bles in a region; as a result, the damage cables cause
the internet outage. Should this outage be classified
into Natural disaster or fiber cut? Even for human this
answer is ambiguous, no need to mention how difficult
it would be for a computer without network knowledge
base. Hence, labeling work can only be done manu-
ally. And, because of the huge amount of data in the
datasets, we first extract a small amount of data about
30 threads from 2006-December to train our classifier.
The distribution of the outage types among these 30
threads is shown in the Figure 3.

= Num of each

outage type in
30 threads

8
7
6
4
3
2
1
0

%
’)

a
¢
Qv

o@“ & \o':v <\ \~>‘ Z.;o \AQ v‘“’b S &
& uP o >
P & (@ & &
& @ &G e S
& T e/b‘{’” Qe"’ & & & X
N & &

Figure 3: Num of Outage type in the 30 threads

3.2 Choice of algorithm

Because the outage type is discrete, so we can use
classification method to solve the problem. But due
to the types is multiple(14 types), so if we use multi-
classification method, the difficulty will increased largely
and time efficiency is very low. So we decide to use mul-
tiple binary classifiers to avoid the multi-classification.
Instead of partitioning the dataset into N categories, we
learn a concept for each category independently; i.e., a
binary classifier trying to determine whether a thread
belongs in a particular category or not. So based on
this method, we should classify the dataset 14 times
to get all type of outage classification. Compared to
classify the dataset one time using multi-classification,
this method largely decreases the difficulty and largely
improve the efficiency. For solving the binary classifi-
cation problem, we think the best solution is Support
Vector Machine(SVM). SVMs are supervised learning
models with associated learning algorithms that ana-
lyze data and recognize patterns, used for classification
and regression analysis. Given a set of training exam-
ples, each marked as belonging to one of two categories,
an SVM training algorithm builds a model that assigns
new examples into one category or the other, making it
a non-probabilistic binary linear classifier. It has some

advantages than other machine learning methods:

1. it has a regularisation parameter, which makes the
user think about avoiding over-fitting

2. it maximizes margin, so the model is slightly more
robust

3. it uses the kernel trick, so you can build in expert
knowledge about the problem via engineering the
kernel

Besides, we will also evaluate the goodness of the learn-
ing step using a standard 10-fold cross-validation into
the SVM algorithm. In 10-fold cross-validation, the
original sample is randomly partitioned into 10 equal
size subsamples. Of the 10 subsamples, a single sub-
sample is retained as the validation data for testing
the model, and the remaining 9 subsamples are used
as training data. The cross-validation process is then
repeated 10 times, with each of the 10 subsamples used
exactly once as the validation data. The 10 results from
the folds can then be averaged (or otherwise combined)
to produce a single estimation. The advantage of this
method over repeated random sub-sampling is that all
observations are used for both training and validation,
and each observation is used for validation exactly once.

4. IMPLEMENTATION AND PRELIMINARY

RESULT

For the implementation, we decide to user a linear-
kernel SVM for classification using the LibSVM toolkit
which performed well in terms of both accuracy and
speed. LibSVM toolkit is an integrated software for
support vector classification, regression and distribution
estimation. It also supports multi-class classification.

From now we use the toolkit into our first 30 data-
preprocessed try data, we use the first 15 threads to
train the classifier and use the next 15 threads to test
the classifiers performance that we trained. The table
2 shows the accuracy of the 14 outage types predic-
tion and the average of our trained classifier is 92.857%.
From the table, we can see that the accuracy of the out-
age types prediction is extremely well(most of them are
100%). We think there are some reasons for getting this
extremely well result:

The number of training data is not enough. We know
that if we do the classification, we must have a large
number of training data to train the classifier. But our
first try-data is not enough, it will result in the classifier
is not general to all the possible situations.

The number of predicted data is not enough. The
predicted data may be just match this trained classifier
well, it not represent the general situations.

In the data-preprocess step, we remove many unre-
lated content of the text, so the noise of the data is very

small. It may result in a better result for classification.
In the future, we will improve the first two factors.

Outage types classification accuracy
Routing 93.3333%
Power outage 100%
Packet loss 100%
Natural disaster 66.6667%
Mobile data network 100%
Fiber cut 80%
DNS resolution 100%
Device failure 60%
Congestion 100%
Censorship 100%
Attack 100%
Application server 100%
Application configuration 100%
Maintenance 100%
Average accuracy 92.85714286%

Table 2: Classification result

5. FUTURE PLANS

Beside the tasks that we implemented so far, there are
more things that we can do in order to improve the ac-
curacy and efficiency of this project, such as use linear-
kernel SVM, enlarge the size of test data and test our
classifier with new data.

5.1 Data Enlarge

Because we just use small samples to try our method
for the runtime consideration, we will enlarge our data
using in the method.

5.2 Get areasonable result for the outage type
classification prediction

Get a reasonable classifier that predict a new thread
which belongs to what outage type. The result can
basically match the threads actual outage type.

6. WHAT WE HAVE DONE

In this paper, we have integrated the posts with the
same subject to the same thread in the mailing list. Fur-
thermore, we have extracted and omitted the unessen-
tial data information and maintain the important data
information for our classifier by using a stop words list
that was obtained from the SMART information re-
trieval system[5]. We manually increased the amount of
words in the stop words list from 571 to 1514, labeled
thirty threads as our training data and used python
Natural Language Toolkit(NLTK) to lemmatiz the data
and improve the classification. Then, we tried out TF-
IDF and found out that a word with high td-idf value

within a thread doesn’t mean the word is useful for
the classification; as the result, we imported name-word
library and city-word library of python Natural Lan-
guage Toolkit(NLTK) to avoid this situation. After
this, we generated two-dimensional matrix and obtained
the useful data for our classification and got the classi-
fication result.

7.
1]

[7]

REFERENCES

Kristen Carosa (2014, Dec 11), Widespread
FairPoint Internet outage affects NH customers.
Retrieved from

http://www.wmur.com/money /widespread-
fairpoint-internet-outage-affecting-nh-
customers,/30176172

Mary Scott (2014, September 5), Pellissippi State
internet outage impacts all 5 campuses. Retrieved
from http://www.wbir.com/story/news/local
/2014/09/05 /pellissippi-state-internet-outage-
impacts-all-5-campuses/15152481/

Ritwik Banerjee, Abbas Razaghpanah, Luis
Chiang, Akassh Mishra, Vyas Sekar, Yejin Choi,
Phillipa Gill, Internet Outages, the Eyewitness
Accounts: Analysis of the Outages Mailing List,
2013

V.Rode. Outagesoutages(planned unplanned)
reporting. Retrieved from https://puck.nether.
net/mailman/listinfo/outages

J. J. Rocchio. Relevance feedback in information
retrieval,1971. Retrieved from
http://jmlr.org/papers/volumeb/lewis04a/all-
smart-stop-list /english.stop

J. Ramos. Using TF-IDF to determine word
relevance in document queries In Proc. Inter-
national Conference on Machine Learning (ICML),
2003.

virendra.rode@outages.org Internet outages
mailing list, 2006. Retrieved from
https://puck.nether.net/mailman/listinfo/outages

